
Analysis of the
.NET CLR Exception Handling Mechanism

Nicu G. Fruja
Computer Science Department, ETH Zürich

fruja@inf.ethz.ch

Egon Börger
Dipartimento di Informatica, Università di Pisa

boerger@di.unipi.it

ABSTRACT
We provide a complete mathematical model for the exception handling mechanism of the Common Language Run-
time (CLR), the virtual machine underlying the interpretation of .NET programs. The goal is to use this rigorous
model in the corresponding part of the still-to-be-developed soundness proof for the CLR bytecode verifier.

Keywords
exception handling, .NET CLR, .NET CIL, bytecode

1 INTRODUCTION

This work is part of a larger project [6] which aims
at establishing some outstanding properties of C] and
CLR by mathematical proofs. Examples are the cor-
rectness of the bytecode verifier of CLR, the type
safety (along the lines of the first author’s correctness
proof [12] for the definite assignment rules of C]), the
correctness of a general compilation scheme. We try
to reuse as much as possible and to extend where nec-
essary similar work which has been done for Java and
the Java Virtual Machine (JVM) [15]. As part of this
effort, in [8] an abstract interpreter has been developed
for C], including a thread and memory model [9]; see
also [10] for a comparative view of the abstract inter-
preters for Java and for C].

In [7] an abstract model is defined for the CLR vir-
tual machine without the exception handling instruc-
tions, but including all the constructs which deal with
the interpretation of the procedural, object-oriented
and unsafe constructs of .NET compatible languages
such as C], C++, Visual Basic, VBScript, etc. The
reason why we present here a separate model for the

Permission to make digital or hard copies of all part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or fee.
.NET Technologies’2005Conference proceedings,

ISBN 80-75832,/0,0
Copyright UNION Agency – Science Press, Plzen, Czech Republic

exception handling mechanism of CLR is to be found
in the numerous non-trivial problems we encountered
in an attempt to fill in the missing parts on exception
handling in the ECMA standard [1]. Already in JVM
the most difficult part for the correctness proof of the
bytecode verifier was the one dealing with exception
handling (see [15,§16]). This holds in a stronger sense
also for CLR. The concrete purposes we are pursu-
ing in this paper are twofold. First, we want to de-
fine a rigorous ground model for the CLR exception
mechanism, to be used as reference model for that part
of the still-to-be-developed correctness proof for the
bytecode verifier. Secondly, we want to clarify the nu-
merous issues concerning exception handling which
are left open in the ECMA standard, but relevant for
a correct understanding of the CLR mechanism. We
do not discuss here its design rationale nor any design
alternatives.

The ECMA standard for CLR contains only a few
yet incomplete paragraphs about the exception han-
dling mechanism. A more detailed description of the
mechanism can be found in one of very few existing
documents on the CLR exception handling [2]. The
CLR mechanism has its origins in the Windows NT
Structured Exception Handling (SEH). An interested
reader can find all the insights of the SEH in [3]. What
we are striving for, the CLR type safety, is proved for a
subset of CLR in [4]. However, that approach does not
consider the exception handling classified in [4,§4] as
a fairly elaborate model that permits a unified view of
exceptions inC++, C], and other high-level languages.
So far, no formal model has been developed for the
CLR exception handling. The JVM exception mech-
anism, which differs a lot from the one of CLR, has
been formalized in [16, 15].

We use three different methods to check the faithful-
ness (with respect to CLR) of the modeling decisions
we had to take where the ECMA standard exhibits de-
plorable gaps. First of all we made a series of exper-
iments with CLR, some of which are made available
in [5] to allow the reader to redo and check them. We
hope that these programs will be of interest to the prac-
titioner and compiler writer, as they show border cases
which have to be considered to get a full understand-
ing and definition of exception handling in CLR. Sec-
ondly, to provide some authoritative evidence for the
correctness of the modeling ideas we were led to by
our experiments, over the Fall of 2004 the first author
had an electronic discussion with Jonathan Keljo, the
CLR Exception System Manager, which essentially
confirmed our ideas about the exception mechanism
issues left open in the ECMA documents. Last but not
least a way is provided to test the internal correctness
of the model presented in this paper and its confor-
mance to the experiments with CLR, namely by an ex-
ecutable version of the CLR model, using AsmL [18].
Upon completion of the AsmL implementation of the
entire CLR model the full details will be made avail-
able in [14].

Since the focus of this paper is the exception mech-
anism of CLR, we assume the reader to be knowledge-
able about (or at least to have a rough understand-
ing of) CLR. For the sake of precision we refer in
this paper without further explanations to the model
EXECCLRN defined in [7], which describes what the
machine does upon its ”normal” (exception-free) exe-
cution. Our model for CLR together with the excep-
tion mechanism comes in the form of an Abstract State
Machine (ASM) CLRE .

Since the intuitive understanding of the ASMs ma-
chines as pseudo-code over abstract data structures is
sufficient for the comprehension of CLRE , we abstain
here from repeating the formal definition of ASMs
which can be found in the AsmBook [17]. How-
ever, for the reader’s convenience we summarize here
the most important concepts and notations that are
used in the ASMs throughout this paper. An abstract
state of an ASM is given by a set of dynamic func-
tions. Nullary dynamic functions correspond to ordi-
nary state variables. Formally all functions are total.
They may, however, return the special elementundef
if they are not defined at an argument. In each step,
the machine updates in parallel some of the functions
at certain arguments. The updates are programmed us-
ing transition rulesP, Q with the following meaning:

f (s) := t updatef ats to t
if ϕ then P elseQ if ϕ, then executeP, elseQ
P Q executeP andQ in parallel
let x = t in P assignt to x and then executeP
P seqQ executeP and thenQ
P or Q executeP or Q

Notational conventionsIn the paper, beside the usual
list operations (e.g.push, pop, top, length, ·)1, we use
a different operation: for a listL, split(L,1) splits off
the last element ofL. More exactly,split(L,1) is the
pair (L′, [x]) whereL′ · [x] = L.

The paper is organized as follows. We list in Sec-
tion 2 a few notations defined in [7] and which are
used throughout the rest of the paper. Section 3 gives
an overview of the CLR exception handling mecha-
nism. The elements of the formalization are intro-
duced in Section 4. Section 5 defines the so-called
StackWalkpass of the exception mechanism. The other
two passes,UnwindandLeaveare defined in Section 6
and Section 7, respectively. The execution rules of
CLRE are introduced in Section 8. Section 9 con-
cludes.

2 PRELIMINARIES

In this section, we summarize briefly the notations
introduced in [7] which are relevant for the exception
handling mechanism. For detailed description we refer
the reader to [7].

A call frame consists of a program counterpc : Pc,
local variables addresseslocAdr : Map(Local, Adr),
arguments addressesargAdr : Map(Arg, Adr), an
evaluation stack2 evalStack : List(Value), and a
method referencemeth : MRef. The frame denotes
the currently executed frame. Accordingly,pc gives
the program counter of the current frame,locAdr the
local variables addresses of the current frame, etc.

The stack of call frames is denoted by
frameStack and is defined as a list of frames.
Note that we separate the current frame from the
stack of call frames, i.e.frame is not contained in
frameStack.

The macros PUSHFRAME and POPFRAME are used
to push and pop theframe, respectively.

PUSHFRAME ≡ push(frameStack, frame)

POPFRAME ≡
let (frameStack′,

[(pc′, locAdr′, argAdr′, evalStack′, meth′)])
= split(frameStack, 1) in

pc := pc′

locAdr := locAdr′

argAdr := argAdr′

evalStack := evalStack′

meth := meth′

frameStack:= frameStack′

1The “·” denotes the operationappendfor lists.
2In order to simplify the exposition we describe here the

evalStackas a list of values though [7] defines it as a list of pairs
from Value× Type.

Fig. 1 The CLRE machine

CLRE ≡
if switch= ExcMechthen

EXCCLR
elseifswitch= Noswitchthen

INITIALIZE CLASS or EXECCLRE(code(pc))

3 THE OVERALL PICTURE

Every time an exception occurs, the control is trans-
ferred from “normal” execution (inEXECCLRE) to
a so-called “exception handling mechanism” which
we model as a submachineEXCCLR. To switch
from normal execution (read: in modeNoswitch)
to this new component, the mode is set to, say,
switch := ExcMechwhich interruptsEXECCLRE

and triggers the execution ofEXCCLR. The ma-
chine EXECCLRE is an extension of the exception-
handling-free machineEXECCLRN by a submachine
which executes instructions related to exceptions (like
Throw, Rethrow, etc.); it will be defined in Fig. 4. Due
to the very weak conditions imposed by the ECMA
standard on class initialization, the overall structure
of CLRE has to foresee that the initialization of a
beforefieldinit 3 class may start at any moment
as analyzed in detail in [11]; this explains the defini-
tion of CLRE as a machine which, in the normal ex-
ecution mode, non-deterministically chooses whether
to start a class initialization or to execute the current
instructioncode(pc) pointed at by the program counter
pc (see Fig. 1).

The exception handling mechanism proceeds in
two passes. In the first pass, the run-time sys-
tem runs a “stack walk” searching, in the possibly
empty exception handling array associated byexcHA:
Map(MRef, List(Exc)) to the current method, for the
first handler that might want to handle the exception:

• acatch handler whosetypeis a supertype of the
type of the exception, or

• a filter handler – to see whether afilter
wants to handle an exception, one has first to exe-
cute (in the first pass) the code in the filter region:
if it returns1, then it is chosen to handle the ex-
ception; if it returns0, this handler is not good to
handle the exception.

Visual Basic and Managed C++ have special
catch blocks which can “filter” the exceptions based
on the exception type and / or any conditional expres-
sion. These are compiled intofilter handlers in the

3The ECMA standard states in [1, Partition I,§8.9.5] that, if
a class is markedbeforefieldinit , then the class initializer
method is executedat any time beforethe first access to any static
field defined for that class.

Common Intermediate Language (CIL) bytecode. As
we will see, thefilter handlers bring a lot of com-
plexity to the exceptions mechanism.

The ECMA standard does not clarify what happens
if the execution of thefilter or of a method called
by it throws an exception. The currently handled ex-
ception is known as anouter exceptionwhile the newly
occured exception is called aninner exception. As we
will see below, the outer exception is not discarded but
its context is saved byEXCCLR while the inner ex-
ception becomes the outer exception.

If a match is not found in thefaulting frame, i.e. the
frame where the exception has been raised, the calling
method is searched, and so on. This search eventu-
ally terminates since theexcHAof theentrypoint
method has as last entry a so-calledbackstop entry
placed by the operating system. When a match is
found, the first pass terminates and in the second pass,
called “unwinding of the stack”, CLR walks once
more through the stack of call frames to the handler
determined in the first pass, but this time executing
thefinally andfault 4 handlers and popping their
frames. It then starts the corresponding exception han-
dler.

The reader might ask why there are two passes,
i.e. why the handling mechanism does not proceed
in a single pass by executing also thefinally and
fault handlers. The answer is to be found in the ori-
gins of the CLR exception handling mechanism: the
two pass model was invented for Windows NT, before
the CLR was ever envisioned. There are two advan-
tages of a 2-pass model:

• it allows afilter to update the exception con-
text and then continue the faulting exception;

• it allows for better debugging, since one can of-
ten detect that an exception will go unhandled in
the first pass, without any second pass backout
disturbing the exception context;

4 THE GLOBAL VIEW OF EXCCLR

In this section, we provide some detail on the el-
ements, functions and predicates needed to turn the
overall picture into a rigorous model.

The elements of an exception handling array
excHA : Map(MRef, List(Exc)) are known as
handlersand can be of four kinds. They are elements
of a setExc:

4Currently, no language (other than CIL) exposesfault han-
dlers directly. Afault handler is simply afinally handler that
only executes in the exceptional case.

ClauseKind = catch | filter
| finally | fault

Exc = Exc(clauseKind : ClauseKind
tryStart : Pc
tryLength : N
handlerStart : Pc
handlerLength : N
type : ObjClass
filterStart : Pc)

Any 7-tuple of the above form describes a handler
of kind clauseKindwhich “protects” the region5 that
starts attryStartand has the lengthtryLength, handles
the exception in an area of instructions that starts at
handlerStartand has the lengthhandlerLength– we
refer to this area as thehandler region; if the han-
dler is of kindcatch , then thetypeof exceptions it
handles is provided, whereas if the handler is of kind
filter then the first instruction of thefilter re-
gion is at filterStart. In case of afilter handler,
the handler region starting athandlerStart immedi-
ately follows thefilter region – consequently we
have filterStart < handlerStart. We often refer to
the sequence of instructions betweenfilterStart and
handlerStart− 1 as thefilter region. We assume
that afilterStart is defined for a handler if and only if
the handler is of kindfilter , otherwisefilterStart is
undefined.
To simplify the further presentation, we define the
predicates in Fig. 2 for an instruction located at pro-
gram counter positionpos ∈ Pc and a handlerh ∈
Exc. Note that if the predicateisInFilter is true,
then filterStart is defined and thereforeh is of kind
filter . Based on the lexical nesting constraints of
protected blocks specified in [1, Partition I,§12.4.2.7],
one can prove the following property:

Disjointness 1 The predicates isInTry, isInHandler
and isInFilter are pairwise disjoint.

We assume all the constraints concerning the lexical
nesting of handlers specified in the standard [1, Par-
tition I,§12.4.2.7]. The ECMA standard [1, Partition
I,§12.4.2.5] ordering assumption on handlers is:

Ordering assumption If handlers are nested, the
most deeply nested try blocks shall come in the ex-
ception handling array before the try blocks that
enclose them.

Only one handler region per try block? The
ECMA standard specifies in [1, Partition I,§12.4.2]

5We will refer to this region asprotected regionor try block.

that a singletry block shall have exactly one han-
dler region associated with it. But the IL assembler
ilasm does accept alsotry blocks with more than
onecatch handler block. This discrepancy is solved
if we assume that everytry block with more than
one catch block which is accepted by theilasm
is translated in a semantics-preserving way as follows:

.try {
block

} catch block1
catch block2

=⇒

.try {
.try {

block
} catch block1

} catch block2

To handle an exception, theEXCCLR needs to record:

• the exception referenceexc,

• the handlingpass,

• a stackCursor – i.e. the position currently
reached in the stack of call frames (a frame)
and in the exception handling array (an index in
excHA),

• the suitablehandlerdetermined at the end of the
StackWalkpass (if any) is the handler that is go-
ing to handle the exception in the passUnwind
– until the end of theStackWalkpass,handler is
undefined.

According to the ECMA standard, every normal ex-
ecution of atry block or acatch /filter handler
region must end with aLeave(pos) instruction. When
doing this,EXCCLR has to record the currentpassand
stackCursortogether with thetargetup to which every
includedfinally code has to be executed.

ExcRec=

ExcRec(exc : ObjRef
pass : {StackWalk,Unwind}
stackCursor : Frame× N
handler : Frame× N)

LeaveRec=

LeaveRec(pass : {Leave}
stackCursor : Frame× N
target : Pc)

We list some constraints which will be needed below
to understand the treatment of theseLeave instruc-
tions.

Fig. 2 The predicatesisInTry, isInHandlerandisInFilter

isInTry(pos, h) ⇔ tryStart(h) ≤ pos< tryStart(h) + tryLength(h)
isInHandler(pos, h) ⇔ handlerStart(h) ≤ pos< handlerStart(h) + handlerLength(h)
isInFilter(pos, h) ⇔ filterStart(h) ≤ pos< handlerStart(h)

Syntactic constraints:

1. It is not legal to exit with aLeaveinstruction
a filter region, afinally /fault han-
dler region.

2. It is not legal to branch with aLeaveinstruc-
tion into a handler region from outside the re-
gion.

3. It is legal to exit with aLeave a catch
handler region and branch to any instruction
within the associatedtry block, so long as
that branch target is not protected by yet an-
othertry block.

The nesting of passes determinesEXCCLR to main-
tain an initially empty stack of exception or leave
records for the passes that are still to be performed.

passRecStack: List(ExcRec∪ LeaveRec)
passRecStack= []

In the initial state ofEXCCLR, there is no pass to
be executed, i.e.pass= undef.

We can now summarize the overall behavior of
EXCCLR, which is defined in Fig. 3 and analyzed
in detail in the following sections, by saying that if
there is a handler in the frame defined bystackCursor,
then EXCCLR will try to find (when StackWalking)
or to execute (whenUnwinding) or to leave (when
Leaveing) the corresponding handler; otherwise it will
continue its work in the invoker frame or end itsLeave
pass at thetarget.

5 THE StackWalkPASS

During aStackWalkpass,EXCCLR starts in the cur-
rent frameto search for a suitable handler of the cur-
rent exception in this frame. Such a handler exists if
the search positionn in the current frame has not yet
reached the last element of the handlers arrayexcHA
of the corresponding methodm.

existsHanWithinFrame((, , , , , m), n) ⇔
n < length(excHA(m))

If there are no (more) handlers in the frame pointed
to by stackCursor, then the search has to be contin-

ued at the invoker frame. This means to reset the
stackCursorto point to the invoker frame.

SEARCHINVFRAME(f) ≡
let · [f ′, f] · = frameStack· [frame] in

RESET(stackCursor, f ′)

There are three groups of possible handlersh
EXCCLR is looking for in a given frame during its
StackWalk:

• a catch handler whosetry block protects the
program counterpc of the frame pointed at by
stackCursorand whosetypeis a supertype of the
exception type;

matchCatch(pos, t, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = catch ∧
t � type(h)

• a filter handler whosetry block protects the
pcof the frame pointed at bystackCursor;

matchFilter(pos, h) ⇔
isInTry(pos, h) ∧ clauseKind(h) = filter

• a filter handler whosefilter region con-
tainspc of the frame pointed at bystackCursor.
This corresponds to an outer exception and will
be described in more detail below.

The order of theif clauses in thelet statement from the
ruleStackWalkis not important. This is justified by the
following property:

Disjointness 2 For every type t, the predicates
matchCatcht, matchFilter and isInFilter are pairwise
disjoint6.

The above property can be easily proved using the def-
initions of the three predicates and the propertyDis-
jointness1.

If the handler pointed to by thestackCursor, namely
hanWithinFrame((, , , , , m), n) = excHA(m)(n),
is not of any of the above types, thestackCursoris
incremented to point to the next handler in theexcHA:

6By matchCatcht we understand the predicate defined by the set
{(pos, h) | matchCatch(pos,t,h)}.

GOTONXTHAN ≡ stackCursor:= (f , n + 1)
where stackCursor= (f , n)

The Ordering assumptionstated in Section 4 and
the lexical nesting constraints stated in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursor is
a matching7 catch then this handler becomes the
handler to handle the exception in the passUnwind.
ThestackCursoris reset to be reused for theUnwind
pass: it shall point to the faulting frame, i.e. the cur-
rent frame. Note that duringStackWalk, framealways
points to the faulting frame except in case afilter
region is executed. However, the frame built to execute
a filter is never searched for a handler correspond-
ing to the current exception.

FOUNDHANDLER ≡
pass:= Unwind
handler:= stackCursor

RESET(s, f) ≡ s := (f , 0)

If the handler is afilter then by means of
EXECFILTER its filter region is executed. The ex-
ecution is performed in a separate frame constructed
especially for this purpose. However this important
detail is omitted by the ECMA standard [1]. The
currently-to-be-executed frame becomes the frame for
executing thefilter region. The faulting excep-
tion frame is pushed on theframeStack. The current
frame points now to the method, local variables and
arguments of the frame in whichstackCursoris, it
has the exception reference on the evaluation stack
evalStackand the program counterpc set to the be-
ginningfilterStart of the filter region. Theswitch
is set toNoswitchin order to pass the control to the
normal machineEXECCLRE .

7We use theactualTypeOffunction defined in [7] to determine
the run-time type of the exception.

Fig. 3 The exception handling machineEXCCLR
EXCCLR ≡

match pass
StackWalk→

if existsHanWithinFrame(stackCursor) then
let h = hanWithinFrame(stackCursor) in

if matchCatch(pos, actualTypeOf(exc), h) then
FOUNDHANDLER

RESET(stackCursor, frame)
elseifmatchFilter(pos, h) then EXECFILTER(h)
elseif isInFilter(pos, h) then EXIT INNEREXC

elseGOTONXTHAN

else SEARCHINVFRAME(f)
where stackCursor= (f ,) and f = (pos, , , ,)

Unwind→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if matchTargetHan(handler, stackCursor) then

EXECHAN(h)
elseifmatchFinFault(pc, h) then

EXECHAN(h)
GOTONXTHAN

elseif isInHandler(pc, h) then
ABORTPREVPASSREC

GOTONXTHAN

elseif isInFilter(pc, h) then
CONTINUEOUTEREXC

elseGOTONXTHAN

else
POPFRAME

SEARCHINVFRAME(frame)

Leave→
if existsHanWithinFrame(stackCursor) then

let h = hanWithinFrame(stackCursor) in
if isFinFromTo(h, pc, target) then

EXECHAN(h)
if isRealHanFromTo(h, pc, target) then

ABORTPREVPASSREC

GOTONXTHAN

else
pc := target
POPREC

switch:= Noswitch

EXECFILTER(h) ≡
pc := filterStart(h)
evalStack:= [exc]
locAdr := locAdr′

argAdr := argAdr′

meth:= meth′

PUSHFRAME

switch:= Noswitch
where stackCursor=

((, locAdr′, argAdr′, , meth′),)

Exceptions in filter region? It is not documented
in the ECMA standard what happens if an (inner) ex-
ception is thrown while executing thefilter region
during theStackWalkpass of an outer exception. The

following cases are to be considered:

• if the exception is taken care of in thefilter
region, i.e. it is successfully handled by a
catch /filter handler or it is aborted because
it occured in yet anotherfilter region of a
nested handler (see theisInFilter clause), then the
given filter region continues executing nor-
mally (after the exception has been taken care of);

• if the exception is not taken care of in the
filter region then the exception is not prop-
agated further, but itsStackWalkis exited (see
Fig. 3). The exception will be discarded but only
after theEXCCLR runs itsUnwind pass to exe-
cute all thefinally andfault handlers (see
Tests 6, 8 and 9 in [5]).

EXIT INNEREXC ≡
pass:= Unwind
RESET(stackCursor, frame)

6 THE Unwind PASS

As soon as the passStackWalk terminates,
the EXCCLR starts the Unwind pass with the
stackCursorpointing to the faulting exception frame.
Starting there, one has to walk down to thehandlerde-
termined in theStackWalk, executing on the way ev-
ery finally /fault handler region. This happens
also in casehandler is undef. WhenUnwinding, the
EXCCLR searches for

• the matching target handler, i.e. thehandlerde-
termined at the end of theStackWalkpass (if
any) –handlercan beundef if the search in the
StackWalkhas been exited because the exception
was thrown in afilter region. Also the two
handlerandstackCursorframes in question have
to coincide. We say that two frames are the same
if the address arrays of their local variables and
arguments as well as their method names coin-
cide.

matchTargetHan((f1, n1), (f2, n2)) ⇔
sameFrame(f1, f2) ∧ n1 = n2

sameFrame(f1, f2) ⇔
pri(f1) = pri(f2),∀i ∈ {2, 3, 5}

• a matchingfinally /fault handler whose as-
sociatedtry block protects thepc;

matchFinFault(pos, h) ⇔
isInTry(pos, h)∧
clauseKind(h) ∈ {finally , fault }

• a handler whose handler region containspc;

• a filter handler whosefilter region con-
tainspc;

The order of the last threeif clauses in thelet statement
from the ruleUnwind is not important. It only matters
that the first clause is guarded bymatchTargetHan.

Disjointness 3 The following predicates are pairwise
disjoint: matchFinFault, isInHandler and isInFilter.

The property can be proved using the definitions of the
predicates and the propertyDisjointness1.

The Ordering assumptionin Section 4 and the
lexical nesting constraints given in [1, Partition
I,§12.4.2.7] ensure that if thestackCursorpoints to a
handler of one of the above types then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in thestackCursor) of any
of the above types.

If the handler pointed to by thestackCursoris the
handler found in theStackWalk, its handler region is
executed through EXECHAN: the pc is set to the be-
ginning of the handler region, the exception reference
is loaded on the evaluation stack (when EXECHAN is
applied for executingfinally /fault handler re-
gions the current exception is not pushed onevalStack)
and the control switches toEXECCLRE .

EXECHAN(h) ≡
pc := handlerStart(h)
evalStack:=

if clauseKind(h) ∈ {catch , filter } then
[exc]

else
[]

switch:= Noswitch

If the handler pointed to by thestackCursoris a
matching finally /fault handler, its handler re-
gion is executed with initially empty evaluation stack.
At the same time, thestackCursor is incremented
through GOTONXTHAN.

Let us assume that the handler pointed to by
stackCursoris an arbitrary handler whose handler re-
gion containspc.
Exceptions in handler region?The ECMA standard
does not specify what should happen if an exception is
raised in a handler region. The experimentation in [5]
can be resumed by the following rules of thumb for
exceptions thrown in a handler region similarly to the
case of nested exceptions infilter code:

• if the exception is taken care of in the han-
dler region, i.e. it is successfully handled by a

catch /filter handler or it is discarded (be-
cause it occured in afilter region of a nested
handler), then the handler region continues exe-
cuting normally (after the exception is taken care
of);

• if the exception is not taken care of in the handler
region, i.e, escapes the handler region, then

– the previous pass ofEXCCLR is aborted
through ABORTPREVPASSREC;

ABORTPREVPASSREC≡ pop(passRecStack)

– the exception is propagated further, i.e. the
Unwind pass continues via GOTONXTHAN (see
Fig. 3) which sets thestackCursorto the next
handler inexcHA.

The execution of a handler region can only occur
whenEXCCLR runs in theUnwindandLeavepasses:
in Unwind handler regions of any kind are executed
whereas inLeave only finally handler regions
are executed. If the raised exception occured while
EXCCLR runs anUnwind pass for handling an outer
exception, theUnwind pass of the outer exception is
stopped and the corresponding pass record is popped
from passRecStack(seeTests 1, 3 and 4 in [5]). If
the exception has been thrown whileEXCCLR runs a
Leavepass for executingfinally handlers on the
way from aLeaveinstruction to its target, then this
pass is stopped and its associated pass record is popped
off passRecStack(seeTest 2 in [5]).
In this way an exception can go “unhandled” without
taking down the process, namely if an outer exception
goes unhandled, but an inner exception is successfully
handled (see the second case of the preceding case dis-
tinction).

If the handler pointed to by thestackCursor is
a filter handler whosefilter region contains
pc, then the current (inner) exception is aborted and
the filter considered as not providing a handler
for the outer exception. So there is no way to
exit a filter region with an exception. This en-
sures that the frame built by EXECFILTER for exe-
cuting a filter region is used only for this pur-
pose. The handling of the outer exception is con-
tinued through CONTINUEOUTEREXC (see Fig. 3)
which pops the frame built for executing thefilter
region, pops from thepassRecStackthe pass record
corresponding to the inner exception and reestablishes
the pass context of the outer exception, but with
thestackCursorpointing to the handler following the
just inspectedfilter handler. The updates of the
stackCursorin POPREC and GOTONXTHAN are done
sequentially such that the update in GOTONXTHAN

overwrites the update in POPREC.

CONTINUEOUTEREXC ≡
POPFRAME

POPREC seqGOTONXTHAN

POPREC≡
if passRecStack= [] then

SETRECUNDEF

switch:= Noswitch
else let(passRecStack′, [r]) =

split(passRecStack, 1) in
if r ∈ ExcRecthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

if r ∈ LeaveRecthen
let (pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

passRecStack:= passRecStack′

SETRECUNDEF≡
exc := undef
pass := undef
stackCursor:= undef
target := undef
handler := undef

If the handler pointed to by thestackCursoris not of
any of the above types, thestackCursoris incremented
to point to the next handler in theexcHA.

If the Unwindpass exhausted all the handlers in the
frame indicated instackCursorthen the current frame
is popped fromframeStackand theUnwindpass con-
tinues in the invoker frame of the current frame.
Exceptions in class initializers? If an exception oc-
curs in a class initializer.cctor then the class shall
be marked as being in a specific erroneous state and
a TypeInitializationException is thrown.
This means that an exception can and will escape
the body of an initializer only by the specific ex-
ceptionTypeInitializationException . Any
further attempt to access the corresponding class in
the current application domain will throwthe same
TypeInitializationException object. Un-
fortunately, this detail is not specified by the ECMA
standard but it seems to correspond to the actual
CLR implementation and it complies with the re-
lated specification for C] in the ECMA standard (see
Test 7 in [5]). Therefore we assume that the
code sequence of every.cctor is embedded into

a catch handler. Thiscatch handler catches ex-
ceptions of typeObject , i.e. any exception, oc-
cured in.cctor , discards it, creates an object of type
TypeInitializationException 8 and throws
the new exception.

7 THE LeavePASS

The EXCCLR machine gets into theLeave pass
whenEXECCLRE executes aLeaveinstruction upon
the normal termination of atry block or of a
catch /filter handler region. One has to exe-
cute the handler regions of allfinally handlers on
the way from theLeave instruction to the instruc-
tion whose program counter is given by theLeave
target parameter. ThestackCursorused in theLeave
pass is initialized by theLeave instruction. In the
Leavepass, theEXCCLR machine searches for

• finally handlers that are “on the way” from
thepc to thetarget,

• real handlers, i.e.catch /filter handlers that
are “on the way” from thepc to thetarget– more
details are given below.

If the handler pointed to bystackCursor is a
finally handler on the way frompc to thetargetpo-
sition of the currentLeavepass record then the handler
region of this handler is executed (see Fig. 3). If the
stackCursorpoints to acatch /filter handler on
the way frompc to targetthen the previous pass record
on passRecStackis discarded (see Fig. 3). The dis-
carded record can only be referring to anUnwindpass
for handling an exception. By discarding this record,
the mechanism terminates the handling of the corre-
sponding exception.

isFinFromTo(h, pos1, pos2) ⇔
isInTry(pos1, h) ∧ clauseKind(h) = finally ∧
¬isInTry(pos2, h) ∧ ¬isInHandler(pos2, h)

isRealHanFromTo(h, pos1, pos2) ⇔
clauseKind(h) ∈ {catch , filter }∧
isInHandler(pos1, h) ∧ ¬isInHandler(pos2, h)

For each handlerEXCCLR inspects also the next
handler inexcHA. When the handlers in the current
method are exhausted,pc is set totarget, the context
of the previous pass record onpassRecStackis reestab-
lished and the control is passed to normalEXECCLRE

execution (see Fig. 3).

8In the real CLR implementation, the exception thrown
in .cctor is embedded as an inner exception in the
TypeInitializationException . We do not model
this aspect here.

8 THE RULES OF EXECCLRE

The rules ofEXECCLRE in Fig. 4 specify the effect
of the CIL instructions related to exceptions. Each of
these rules transfers the control toEXCCLR. Throw
pops the topmost evaluation stack element (seeRe-
mark below), which is supposed to be an exception
reference. It loads onEXCCLR the pass record as-
sociated to the given exception: thestackCursoris
initialized by the currentframe and 0. If the ex-
ception mechanism is already working in a pass, i.e.
pass 6= undef then the current pass record is pushed
onpassRecStack.

LOADREC(r) ≡
if r ∈ ExcPassthen

let (exc′, pass′, stackCursor′, handler′) = r in
exc := exc′

pass := pass′

stackCursor:= stackCursor′

handler := handler′

else let(pass′, stackCursor′, target′) = r in
pass := pass′

stackCursor:= stackCursor′

target := target′

if pass6= undef then PUSHREC

PUSHREC≡
if pass= Leavethen

push(passRecStack, (pass, stackCursor, target))
elsepush(passRecStack,

(exc, pass, stackCursor, handler))

If the exception reference popped from the
evalStack by the Throw instruction is null , a
NullReferenceException is thrown. For a
given classc, the macro RAISE(c) is defined by the
following code template9:

RAISE(c) ≡
NewObj(c :: .ctor)
Throw

This macro can be viewed as a static method defined in
classObject . Calling the macro is then like invoking
the corresponding method.

The ECMA standard states in [1, Partition III,§4.23]
that theRethrowinstruction is only permitted within
the body of acatch handler. However, the same in-
struction is allowed also within a handler region of
a filter (seeTest 5 in [5]) even if this does not

9The NewObj instruction called with an instance constructor
c ::.ctor creates a new object of classc and then calls the con-
structor.ctor .

Fig. 4 The rules ofEXECCLRE

EXECCLRE(instr) ≡
EXECCLRN (instr)
match instr

Throw→ let r = top(evalStack) in
if r 6= null then

LOADREC((r, StackWalk, (frame, 0), undef))
switch:= ExcMech

elseRAISE(NullReferenceException)

Rethrow→ LOADREC((exc, StackWalk, (frame, 0), undef))
switch:= ExcMech

EndFilter→ let val = top(evalStack) in
if val = 1 then

FOUNDHANDLER

RESET(stackCursor, top(frameStack))
elseGOTONXTHAN

POPFRAME

switch:= ExcMech

EndFinally→ evalStack:= []
switch:= ExcMech

Leave(pos) → evalStack:= []
LOADREC((Leave, (frame, 0), pos))
switch:= ExcMech

match the previous statement. It throws the same ex-
ception reference that was caught by this handler, i.e.
the current exceptionexcof EXCCLR. Formally, this
means that the pass record associated toexcis loaded
on EXCCLR.

In a filter region, there should be exactly one
EndFilter instruction. This has to be the last instruc-
tion in the filter region. EndFilter takes an inte-
ger val from the stack that is supposed to be either
0 or 1. In the ECMA standard,0 and 1 are assim-
ilated with “continue search” and “execute handler”,
respectively. There is a discrepancy between [1, Parti-
tion I,§12.4.2.5] which statesExecution cannot be re-
sumed at the location of the exception, except with a
user-filtered handlerand [1, Partition III,§3.34] which
states that the only possible return values from the
filter are “exceptioncontinue search”(0) and “excep-
tion executehandler”(1). In other words, resumable
exceptions are not (yet) supported contradicting Parti-
tion I.

If val is 1 then the filter handler to which
EndFilter corresponds becomes thehandlerto handle
the current exception in the passUnwind. Remem-
ber that thefilter handler is the handler pointed
to by thestackCursor. The stackCursoris reset to
be used for the passUnwind: it will point into the
topmost frame onframeStackwhich is actually the
faulting frame. Ifval is 0, the stackCursoris incre-
mented to point to the handler following ourfilter
handler. Independently ofval, the current frame
is discarded to reestablish the context of the fault-
ing frame. Note that we do not explicitly popval
from theevalStacksince the global dynamic function

evalStackis updated anyway in the next step through
POPFRAME to theevalStack’ of the faulting frame.

The EndFinally instruction terminates the execu-
tion of the handler region of afinally /fault han-
dler. It empties theevalStackand transfers the con-
trol to EXCCLR. A Leave instruction empties the
evalStackand loads onEXCCLR a pass record cor-
responding to aLeavepass.
Remark The reader might ask why the instruc-
tions Throw, Rethrowand EndFilter do not set the
evalStack. The reason is that this set up, i.e. the emp-
tying of theevalStack, is supposed to be either aside-
effect(the case of theThrowandRethrowinstructions)
or ensured for acorrectCIL (the case of theEndFilter
instruction). Thus, theThrowandRethrowinstructions
pass the control toEXCCLR which, in a next step,
will execute10 acatch /finally /fault handler re-
gion or afilter code or propagates the exception
in another frame. All these “events” will “clear” the
evalStack. In case ofEndFilter, the evalStackmust
contain exactly one item (anint32 which is popped
off by EndFilter). Note that this has to be checked by
the bytecode verifier and not ensured by the exception
handling mechanism.

9 CONCLUSION

We have defined an abstract model for the CLR ex-
ception handling mechanism. On one hand, this paper
has laid the ground for the mathematical correctness
proof of the CLR bytecode verifier. On the other hand,
through the analysis of the mechanism, we discovered
a few gaps in the ECMA standard for CLR. Our model
fills in these gaps and precisely specifies the behavior
of the mechanism in all the subtle but critical cases.

10 ACKNOWLEDGMENT

We are thankful to Jonathan Keljo for the useful dis-
cussion.

References
[1] Common Language Infrastructure, Standard ECMA–335.

http://www.ecma-international.org/ . 2002.

[2] Chris Brumme. The Exception Model.
Blog at http://blogs.msdn.com/cbrumme/ , 2003.

[3] Matt Pietrek. A Crash Course on the Depths of Win32TM

Structured Exception Handling. Microsoft Systems Journal,
January 1997.

[4] Andrew D. Gordon and Don Syme. Typing a Multi-Language
Intermediate Code. Technical Report Microsoft, MSR-TR-
2000-106, December 2000.

[5] N. G. Fruja. Experiments with CLR. Exam-
ple programs to determine the meaning of CLR fea-
tures not specified by the ECMA standard. Available

10One can formally prove that there is such a “step” in the further
run of theEXCCLR.

http://www.ecma-international.org/
http://blogs.msdn.com/cbrumme/

at http://www.inf.ethz.ch/personal/fruja/
publications/clrexctests.pdf

[6] N. G. Fruja. Type Safety in C] and .NET CLR. PhD Thesis in
preparation.

[7] N. G. Fruja. A Modular Design for the .NET CLR Architec-
ture. Proceedings of the Workshop on Abstract State Machines,
ASM’05, France.

[8] E. Börger, N. G. Fruja, V. Gervasi, R. F. Stärk. A High–Level
Modular Definition of the Semantics of C]. Journal Theoretical
Computer Science, June, 2005.

[9] R. F. Sẗark and E. B̈orger. An ASM Specification of C#
Threads and the .NET memory model. Proceedings of the
Workshop on Abstract State Machines,ASM’04, Germany,
Springer LNCS 3052 (2004) pag. 38–60.

[10] E. Börger and R. F. Stärk. Exploiting Abstraction for Speci-
fication Reuse: The Java/C# Case Study. Formal Methods for
Components and Objects: Second International Symposium,
FMCO’03, The Netherlands, Springer LNCS 3188 (2004),
pag. 42–76.

[11] N. G. Fruja. Specification and Implementation Problems for
C]. Proceedings of the Workshop on Abstract State Machines
ASM’04, Germany, Springer LNCS 3052, pag. 127–143.

[12] N. G. Fruja. The Correctness of the Definite Assignment Anal-
ysis in C]. Journal of Object Technology, vol. 3, no. 9, 2004.

[13] H. V. Jula and N.G. Fruja. An Executable Specification of
C]. Proceedings of the Workshop on Abstract State Machines,
ASM’05, France.

[14] C. Marrocco. An Executable Specification of the .NET CLR.
Diploma Thesis supervised by N. G. Fruja, ETH Zürich, 2005.

[15] R. F. Sẗark, J. Schmid, E. B̈orger. Java and the Java Vir-
tual Machine–Definition, Verification, Validation. Springer–
Verlag, 2001.

[16] E. Börger and W. Schulte. A Practical Method for Specifica-
tion and Analysis of Exception Handling – a Java JVM Case
Study. IEEE Transactions of Software Engineering, vol. 26,
2000.

[17] E. Börger and R. F. Stärk. Abstract State Machines–A Method
for High-Level System Design and Analysis. Springer-Verlag,
2003.

[18] Abstract State Machine Language (AsmL), Founda-

tions of Software Engineering Group, Microsoft Research,

Web pages at http://research.microsoft.com/

foundations/AsmL/ .

http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://research.microsoft.com/foundations/AsmL/
http://research.microsoft.com/foundations/AsmL/

	INTRODUCTION
	PRELIMINARIES
	THE OVERALL PICTURE
	THE GLOBAL VIEW OF excCLR
	THE StackWalk PASS
	THE Unwind PASS
	THE Leave PASS
	THE RULES OF execCLRE
	CONCLUSION
	ACKNOWLEDGMENT

